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ABSTRACT
In this paper we report on our Nov98 Hub-4E system, which is

an extension of our Nov97 system[4]. The LIMSI system for the
November 1998 Hub-4E evaluation is a continuous mixture den-
sity, tied-state cross-word context-dependent HMM system. The
acoustic models were trained on the 1995, 1996 and 1997 official
Hub-4E training data containing about 150 hours of transcribed
speech material. 65K word language models were obtained by in-
terpolation of backoff n-gram language models trained on different
text data sets. Prior to word decoding a maximum likelihood parti-
tioning algorithm segments the data into homogenous regions and
assigns gender, bandwidth and cluster labels to the speech seg-
ments. Word decoding is carried out in three steps, integrating
cluster-based MLLR acoustic model adaptation. The final decod-
ing step uses a 4-gram language model interpolated with a category
trigram model.

The main differences compared to last year’s system arise from
the use of additional acoustic and language model training data,
the use of divisive decision tree clustering instead of agglomera-
tive clustering for state-tying, generation graph word using adapted
acoustic models, the use of interpolated LMs trained on different
data sets instead of training a single model on weighted texts, and a
4-gram LM interpolated with a category model. The overall word
transcription error on the Nov98 evaluation test data was 13.6%.

INTRODUCTION
In this paper we describe our Nov98 broadcast news

transcription system and report on our development work
prior to the Nov98 Hub4 evaluation test. The goal of the
DARPA Hub-4 task is to transcribe radio and television
news broadcasts. Radio and television broadcasts contain
signal segments of various linguistic and acoustic natures,
with abrupt or gradual transitions between segments. Data
partitioning serves to divide the continuous stream of acous-
tic data into homegenous segments, associating appropriate
labels with the segments. The segmentation and labeling
procedure[3] first detects and rejects non-speech segments,
and then applies an iterative maximum likelihood segmenta-
tion/clustering procedure to the speech segments. The result
of the partitioning process is a set of speech segments with
cluster, gender and telephone/wideband labels.

The LIMSI Nov98 speech recognizer uses continuous

density HMMs with Gaussian mixture for acoustic model-
ing andn-gram statistics estimated on large text corpora for
language modeling. Each context-dependent phone model
is a tied-state left-to-right CD-HMM with Gaussian mixture
observation densities where the tied states are obtained by
means of a decision tree. Word recognition is performed
in three steps: 1) initial hypothesis generation, 2) word
graph generation, 3) final hypothesis generation,each with
two passes. The initial hypothesis are used in cluster-based
acoustic model adaptation using the MLLR technique[10]
prior to word graph generation and in all subsequent decod-
ing passes. The final hypothesis is generated using a 4-gram
interpolated with a category trigram model with 270 auto-
matically generated word classes[8].

The acoustic models were trained on about 150 hours of
Broadcast News data. Language models (LMs) were ob-
tained by interpolation of backoff n-gram language mod-
els trained on different data sets: BN transcriptions, NAB
newspapers and AP Wordstream texts prior to Sep95 and af-
ter July96, and transcriptions of the BN acoustic data. The
recognition vocabulary contains 65K words and has a lexi-
cal coverage of over 99% on all evaluation test sets. A pro-
nunciation graph is associated witheach word, represented
using a set of 48 phones.

Our development work was aimed at improving the parti-
tioning algorithm[4, 5] and improving the acoustic and lan-
guage models. The main differences relative to our Nov97
system are the use of additional acoustic and language
model training data, the use of divisive decision tree cluster-
ing instead of agglomerative clustering for state-tying, the
generation of word graphs using adapted acoustic models
as well as acoustic model adaptation prior to successive de-
coding passes, the use of interpolated LMs trained on differ-
ent data sets instead of training a single model on weighted
texts, and a 4-gram LM interpolated with a category model.

In the remainder of this paper we provide an overview
of the LIMSI Nov98 Hub-4E system, summarizing some of
our development work in preparation for the Nov98 Hub-4E
evaluation, and differences with our Nov97 system.
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Figure 1: Partitioning algorithm.

DATA PARTITIONING

While it is evidently possible to transcribe the continuous
stream of audio data without any prior segmentation, par-
titioning offers several advantages over this straight-foward
solution. First, in addition to the transcription of what was
said, other interesting information can be extracted such as
the division into speaker turns and the speaker identities.
Prior segmentation can avoid problems caused by linguistic
discontinuity at speaker changes. By using acoustic mod-
els trained on particular acoustic conditions, overall per-
formance can be significantly improved, particularly when
cluster-based adaptation is performed. Finally by eliminat-
ing non-speech segments and dividing the data into shorter
segments (which can still be several minutes long), reduces
the computation time and simplifies decoding.

The segmentation and labeling procedure introduced in
[4] is shown in Figure 1. First, the non-speech segments
are detected (and rejected) using Gaussian mixture models
(GMMs). The GMMs each with 64 Gaussians serve to de-
tect speech, pure-music and other (background). The acous-
tic feature vector used for segmentation contains 38 param-
eters. It is the same as the recognition feature vector except

that it does not include the energy, although the delta en-
ergy parameters are included. The GMMs were each trained
on about 1h of acoustic data, extracted from the training
data after segmentation with the transcriptions. The speech
model was trained on data of all types, with the exception of
pure music segments and silence portions of segments tran-
scribed as speech over music. In order to detect speech in
noisy conditions a second speech GMM was trained on the
F4 segments in the 1996 data set. These model are expected
to match all speech segments. The music model was trained
only on portions of the data that were labeled as pure mu-
sic, so as to avoid mistakenly detecting speech over music
segments. The silence model was trained on the segments
labeled as silence during forced alignment, after excluding
silences in segments labeled as containing speech in the
presence of background music. All test segments labeled
as music or silence are removed prior to further processing.

A maximum likelihood segmentation/clustering iterative
procedure is then applied to the speech segments using
GMMs and an agglomerative clustering algorithm. Given
the sequence of cepstral vectors corresponding to a show
(x1; : : : ; xT ), the goal is to find the number of sources
of homogeneous data (modeled by the p.d.f.f(�j�k) with
a known number of parameters) and the places of source
changes. The result of the procedure is a sequence of non-
overlaping segments(s1; : : : ; sN ) with their associated seg-
ment cluster labels(c1; : : : ; cN ), whereci 2 [1;K] and
K � N . Each segment cluster is assumed to represent one
speaker in a particular acoustic environment. In absence of
any prior knowledge about the stochastic process governing
(K;N ) and the segment lengths, we use as objective func-
tion a penalized log-likelihood of the form

NX

i=1

log f(sij�ci)� �N � �K

where� > 0 and� > 0. The terms�N and�K, which
can be seen as segment and cluster penalties, correspond
to the parameters of exponential prior distributions forN

andK. It is easy to prove that starting with overestimates
of N andK, alternate Viterbi reestimation and agglomera-
tive clustering gives a sequence of estimates of(K;N; �k)
with non decreasing values of the objective function. In
the Viterbi step we reestimate(N; �k) so as to increaseP

i
logf(sij�ci) � �N (i.e. adding a segment penalty�

in the Viterbi search) whereas in the clustering step two or
more clusters can be merged as long as the resulting log-
likelihood loss per merge is less than�.1 Since merging
two models can reduce the number of segments, the change
in segment penalty is taken into account during clustering.
This algorithm stops when no merge is possible. A con-
straint on the cluster size is used to ensure that each clus-

1This clustering criterion is closely related to the MDL or BIC criterion.



ter corresponds to at least 10s of speech. (Recall that the
previously rejected non-speech segments are not considered
here.)

For single Gaussian models the merging criterion is easy
to implement since the log-likelihood loss can be directly
computed from the sufficient statistics of the corresponding
segments[6, 9]. In the more general case of Gaussian mix-
tures, there are no sufficient statistics and there is no direct
solution to compute the resulting mixture and/or the log-
likelihood loss. We can envison estimating the new mixture
from the data but this is a costly procedure. Another so-
lution that we adopted for this work is to modify the ob-
jective function, replacing the likelihood function by the
complete data likelihood of the Gaussian mixtures and ex-
tending the maximum likelihood clustering method to the
Gaussian level. To estimate the log-likelihood loss for two
Gaussian mixtures, we simply have to compute the sum of
the log-likelihood loss while clustering the Gaussians of the
2 mixtures (until we get the desired number of Gaussians).
We have used 8 mixture components per cluster, so to com-
pute the log-likelihood loss induced by merging two clus-
ters agglomerative clustering is performed starting with 16
Gaussians until 8 Gaussians are left.

The process is initialized using a simple segmentation al-
gorithm based on the detection of spectral change (similar to
the first step used in the CMU’96 system[11]). The thresh-
old is set so as to over-generate segments, roughly 5 times
as many segments as true speaker turns. Initially, the clus-
ter set consists of a cluster per segment. This is followed
by Viterbi training of the set of GMMs (one 8-component
GMM per cluster). This procedure is controlled by 3 pa-
rameters: the minimum cluster size (10s), the maximum
log-likelihood loss for a merge (�), and the segment bound-
ary penalty (�). When no more merges are possible, the
segment boundaries are refined using the last set of GMMs
and an additional relative energy-based boundary penalty,
within a 1s interval. This is done to locate the segment
boundaries at silence portions, attempting to avoid cutting
words (but sometimes this still occurs).

Speaker-independent GMMs corresponding to wideband
speech and telephone speech (each with 64 Gaussians) are
then used to label telephone segments. This is followed by
segment-based gender identification, using 2 sets of GMMs
with 64 Gaussians (one for each bandwidth). The result
of the partitioning process is a set of speech segments with
cluster, gender and telephone/wideband labels.

In developing the partitioner we used the dev96 data set,
and we evaluated the frame level segmentation error (similar
to [7]) on the 4 half-hour shows in the eval96 test data using
the manual segmentation found in the reference transcrip-
tions. The NIST transcriptions of the test data contain seg-
ments that were not scored, since they contain overlapping
or foreign speech, and occasionally there are small gaps be-

Show 1 2 3 4 Avg
Frame Error 7.9 2.3 3.3 2.3 3.7
M/F Error 0.4 0.6 0.6 2.2 1.0

#spkrs/#clusters 7/10 13/17 15/21 20/21 -
ClusterPurity 99.5 93.2 96.9 94.9 95.9
Coverage 87.6 71.0 78.0 81.1 78.7

Table 1: Top: Speech/non-speech frame segmentation error (%),
using NIST labels, where missing and excluded segments were
manually labeled as speech or non-speech. Bottom: Cluster purity
and best cluster coverage (%).

tween consecutive transcribed segments. Since we consid-
ered that the partitioner should also work correctly on these
portions, we relabeled all excluded segments as speech, mu-
sic or other background.

Table 1(top) shows the segmentation frame error rate and
speech/non-speech errors for the 4 shows. The average
frame error is 3.7%, but is much higher for show 1 than
for the others. This is due to a long and very noisy seg-
ment that was deleted. Averaged across shows the gender
labeling has a 1% frame error. In addition to these errors,
there are 6.2% female speech frames deleted (largely due
to the same segment) and 1.7% of the male frames deleted.
The bottom of Table 1 shows measures of the cluster homo-
geneity. The first entry gives the total number of speakers
and identified clusters per file. In general there are more
clusters than speakers, as a cluster can represent a speaker
in a given acoustic environment. The second measure is
the cluster purity, defined as the percentage of frames in the
given cluster associated with the most represented speaker
in the cluster. (A similar measure was proposed in [1], but
at the segment level.) The table shows the weighted average
cluster purities for the 4 shows. On average 96% of the data
in a cluster comes from a single speaker. When clusters are
impure, they tend to include speakers with similar acous-
tic conditions. The “best cluster” coverage is a measure of
the dispersion of a given speaker’s data across clusters. We
averaged the percentage of data for each speaker in the clus-
ter which has most of his/her data. On average 80% of the
speaker data is going to the same cluster. In fact, the aver-
age value is a bit misleading as there is a large variance in
the best cluster coverage across speakers. For most speakers
the cluster coverage is close to 100%, i.e., a single cluster
covers essentially all frames of their data. However, for a
few speakers (for whom there is a lot of data), the speaker
is covered by two or more clusters, each containing compa-
rable amounts of data.

In order to assess the result of automatic segmentation
on the recognition performance, we ran the first decoding
step (ie. no adaptation) on three evaluation data sets, using
both manual (NIST) and automatic segmentations. On the
eval97 and eval98 test data, the word error increase with the
automatic segmentation is about 1.5% relative (0.3% abso-



lute). A larger performance degradation was observed on
the eval96 test data (2.6% relative, 0.6% absolute) due to
the long segment deleted in show 1.

ACOUSTIC MODELING
The acoustic models were trained on all the available

transcribed task-specific training data, amounting to about
150 hours of audio data. This data was used to train the
Gaussian mixture models needed for segmentation and the
acoustic models for use in word recognition. We used the
August 1997 and February 1998 releases of the LDC tran-
scriptions. Overlapping speech portions were detected in
the transcriptions and removed from the training data.

The acoustic analysis derives cepstral parameters from a
Mel frequency spectrum estimated on the 0-8kHz band (0-
3.5kHz for telephone speech models) every 10ms[3] For
each 30ms frame the Mel scale power spectrum is com-
puted, and the cubic root taken followed by an inverse
Fourier transform. Then LPC-based cepstrum coefficients
are computed. The cepstral coefficients are normalized on a
segment cluster basis using cepstral mean removal and vari-
ance normalization. Each resulting cepstral coefficient for
each cluster has a zero mean and unity variance. The 39-
component acoustic feature vector consists of 12 cepstrum
coefficents and the log energy, along with the first and sec-
ond order derivatives.

Gender-dependent acoustic models were built using
MAP adaptation of SI seed models for wideband and tele-
phone band speech[2]. For computational reasons, a smaller
set of acoustic models is used in the bigram pass to generate
a word graph. These position-dependent, cross-word tri-
phone models cover 5416 contexts, with 11500 tied states
and 32 Gaussians per state. For trigram decoding a larger
set of 27506 position-dependent, cross-word triphone mod-
els with 11500 tied states was used. Acoustic model devel-
opment aimed to minimize the word error rate on the eval96
test data.

This year we used divisive decision tree clustering instead
of agglomerative clustering for state-tying. This is partic-
ularly interesting when there are a very large number of
states to cluster since it is at the same time both faster and
is more robust than a bottom-up greedy algorithm. A set
of 184 questions concern the phone position, the distinctive
features (and identitites) of the phone and the neighboring
phones. As was done last year, specific phone symbols are
used to explicitly model filler words and breath noises.

LANGUAGE MODELING
All language models used in the different steps were ob-

tained by interpolation of backoff n-gram language models
trained on different data sets. To build the n-gram LM 4
models trained on the following sources were interpolated:

1- BN transcriptions from LDC (years 92-95) and from
PSMedia (years 96 and 97 (the period 15/10/96 - 14/11/96

was excluded): 203M words
2- NAB newspaper texts and AP Wordstream texts prior

to September 1995: 202M words
3- NAB newspaper texts and AP Wordstream texts from

July 1996 to August 1997 (the period 15/10/96 - 14/11/96
was excluded) : 141M words

4- Transcriptions of the acoustic data, BN data (including
the 1995 MarketPlace data): 1.6M words

The interpolation coefficients of these 4 LMs were cho-
sen in order to minimize the perplexity on the Nov96
and Nov97 evaluation test sets. A backoff 4-gram LM
is derived from this interpolation by merging the 4 LM
components[12]. Interpolating LMs trained on the differ-
ent data sets resulted in lower perplexities than training a
single model on all the texts (weighted) as we have done
in the past[4]. This is a better approach, both cleaner and
more accurate. The perplexity of the eval97 test set with an
interpolated 4-gram LM is 162.0, compared with 179.5 with
a 4-gram trained on empirically weighted data. The result-
ing 4-gram LM is interpolated with a 3-gram class based
language model, with 270 automatically determined word
classes[8]. The classification procedure uses a Monte-Carlo
algorithm to minimize the conditional relative entropy be-
tween a word-based bigram distribution and a class-based
bigram distribution. Bigram and trigram LMs were built in
a similar manner for use in the first two decoding steps.

The BN texts from PSmedia were processed using a mod-
ified version of the bnraw2sgml.pl perl script from BBN
made available by LDC. The broadcast news training texts
were cleaned in order to be homogeneous with the previous
texts, and filler words such as UH and UHM, were mapped
to a unique form. All of the training texts (95 Hub3 and
Hub4, and BN) were reprocessed to add a proportion of
breath markers (4%), and of filler words (0.5%)[3]. As was
done in previous years, the texts were processed so as to
treat some frequent word sequences as compound words,
and to treat the 1000 most frequent acronyms in the training
texts as whole words instead of as sequences of independent
letters.

LEXICAL MODELING

The recognition vocabulary contains 65,122 words and
72,788 phone transcriptions. All words occuring a mini-
mum of 15 times in the broadcast news texts (63,954 words)
or at least twice in the acoustic training data (23,234 words)
were included in the recognition vocabulary. The lexical
coverage was 99.14% and 99.53% on the eval96 and eval97
test sets respectively. The lexical coverage on a show se-
lected from the BN texts of February 28, 1998 was 99.43%.
On the eval98 test data the lexical coverage was 99.73%
(99.78% on set1 / 99.67% on set2).

The lexicon was extended to include about 2000 new
words (including fragments) found in the February 1998



transcription release, and 6800 words in the new training
texts from PSmedia.

Pronunciations are based on a 48 phone set (3 of them
are used for silence, filler words, and breath noises). The
filler and breath phones were added to model these events,
which are relatively frequent in the broadcast data and are
not used in transcribing other lexical entries. A pronuncia-
tion graph is associated with each word so as to allow for al-
ternate pronunciations, including optional phones. As done
in previous years, the lexicon contains compound words for
about 300 frequent word sequences, as well as word entries
for common acronyms. This provides an easy way to allow
for reduced pronunciations[3].

WORD DECODING

The word decoding procedure is shown in Figure 2. Prior
to decoding, segments longer than 30s are chopped into
smaller pieces so as to limit the memory required for the
trigram and 4-gram decoding passes[3]. To do so a bimodal
distribution is estimated by fitting a mixture of 2 Gaussians
to the log-RMS power for all frames of the segment. This
distribution is used to determine locations which are likely
to correspond to pauses, thus being reasonable places to cut
the segment. Cuts are made at the most probable pause
15s to 30s from the previous cut. Word recognition is per-
formed in three steps: 1) initial hypothesis generation, 2)
word graph generation, 3) final hypothesis generation,each
with two passes.

Step 1: Initial Hypothesis Generation (fast decoding)
This step, carried out in two passes, generates initial hy-
potheses which are used for cluster-based acoustic model
adaptation. The first pass of this step generates a word
graph using a small bigram backoff language model and
gender-specific sets of 5416 position-dependent triphones
with about 11500 tied states. This is followed by a second
decoding pass with a larger set of acoustic models (27506
triphones with 11500 tied states) and a trigram language
model (about 8M trigrams and 15M bigrams) to generate
the hypotheses. Band-limited acoustic models are used for
the telephone speech segments.

Step 2: Word Graph Generation Unsupervised
acoustic model adaptation (both means and variances)
is performed for each segment cluster using the MLLR
technique[10]. The mean vectors are adaptated using a sin-
gle block-diagonal regression matrix, and a diagonal matrix
is used to adapt the variances. Each segment is decoded
first with a bigram language model and an adapted version
of small set of acoustic models, and then with a trigram lan-
guage model (8M bigrams and 17M trigrams) and adapted
versions of the larger acoustic model set.

Step 3: Final Hypothesis GenerationThe final hypoth-
esis is generated using a 4-gram interpolated with a cate-
gory trigram model with 270 automatically generated word
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Figure 2: Word decoding.

classes[8]. The first pass of this step uses the large set of
acoustic models adapted with the hypothesis from Step 2,
and a 4-gram language model. This hypothesis is used to
adapt the acoustic models prior to the final decoding step
with the interpolated category trigram model.

Test set (Word Error)
System Eval96 Eval97 Eval98
Nov96 system 27.1*
Nov97 system 25.3 18.3
Nov98 system 19.8 13.9 13.6

Table 2: Summary of BN transcription word error rates. *Nov96
system used a manual partition.

Table 2 reports the word recognition results on the eval
test sets from the last three years. All of our system devel-
opment was carried out using the eval96 data. The results
shown in bold are the official NIST scores obtained by the
different systems. Only the Nov96 system used a manual
partition. In Nov97 our main development effort was de-
voted to moving from a partitioned evaluation to the unpar-
titioned one. The Nov97 system did not use focus-condition
specific acoustic models as had been used in the Nov96 sys-
tem. This system nevertheless achieved a performance im-
provement of 6% on the eval96 test data. The Nov98 sys-
tem has more accurate acoustic and language models, and
achieves a relative word error reduction of over 20% com-
pared to the Nov97 system.



Test set (Word Error)
System Step Eval96 Eval97 Eval98
Step1 3-gram 25.30 18.44 18.31
Step2 3-gram 20.95 14.56 14.24
Step3 4-gram 20.23 14.26 13.66

4-gram class 19.79 13.92 13.56

Table 3: Word error rates after each decoding step with the Nov98
system.

Step CPU time Memory
Partitioning: �2-3xRT < 10Mb
Word decoding:

step#1 (generate tg hyp): �35xRT �300Mb
step#2 (tg run): �130xRT �400Mb
step#3 (fg + class LM): �30xRT �600Mb

Overall: �200xRT

Table 4: Computational requirements on development data
(eval96) with the Nov98 system.

Table 3 gives the word error rates for the Nov98 sys-
tem after each decoding step and Table 4 shows the ap-
proximate computational requirements for partitioning and
word decoding measured on development runs using the
eval96 data. The runs were done on Silicon Graphics Ori-
gin200, R10K processor running at 180MHz and with 1Gb
memory.2 The first decoding step that is used to generate
the initial hypothesis runs in about 35xRT and has a word
error of 25% on the eval96 data, and 18% on the eval97 and
eval98 sets. A word error reduction of about 20% is ob-
tained in the second decoding step which uses the adapted
acoustic models. Relatively small gains are obtained in the
4-gram decoding passes, even though these also include an
extra acoustic model adaptation.

SUMMARY & DISCUSSION

In this paper we have presented our Nov98 broadcast
news transcription system, and highlightedour development
work. The main changes to our system are the generation of
word graphs with adapted acoustic models using an initial
hypothesis obtained in a fast decoding pass. This step is es-
sential for obtaining word graphs with low word error rates.
Unsupervised HMM adaptation is performed prior to each
decoding pass using the hypothesized transcription of the
previous pass. This strategy leads to a significant reduction
in word error rate. The method used to generate the LMs
was changed to use interpolated LMs trained on different
data sets were used instead of training a single model. This
led to more accurate LMs. More training data has been used
for both acoustic and language modeling. Concerning the

2These numbers are only indicative. No effort was made to optimize the
processing time nor the memory requirements, as long as they fit within our
computational means.

acoustic models, state-tying uses divisive decision tree clus-
tering instead of agglomerative clustering. This is particu-
larly interesting when there are a very large number of states
to cluster. These improvements have led to a substantial per-
formance gain (over 20%) compared to our Nov97 system.
The overall word transcription error of the Nov98 unparti-
tioned evaluation test data (3 hours) was 13.6%. Although
substantial performance improvements have been obtained,
there is still plenty of room for improvement of the underly-
ing speech recognition technology. On unrestricted broad-
cast news shows, such as the 1996 dev and eval data, the
word error rate is still about 20% (even though the NIST
scoring program has removed overlapping speech).
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